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There are a variety of abnormal running conditions in rotating machinery which lead to
rotor/stator interaction dynamics which, in turn, can cause a rich mixture of e!ects
associated with rub-related phenomena. These e!ects manifest themselves in the occurrence
of multiple solutions for steady state vibration response scenarios, including amplitude
jumps during rotor acceleration, and vibration responses at di!erent/multiple frequencies of
excitation forces such as unbalance. This paper describes a numerical algorithm based on the
harmonic balance method to calculate the periodic response of a non-linear system under
periodic excitation. The algorithm also calculates the stability of the periodic solutions
found, marks turning and bifurcation points, and follows a solution branch over varying
system parameters via arc-length continuation.
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1. INTRODUCTION

The motivation for this study comes from rotor/stator contact induced vibration problems
in turbo-machinery. They can include rotors touching seals, rotor touching retainer
bearings when main active magnetic bearings fail, inter-shaft contact in multiple spool
engines, rotor blades contacting the stator, increased bearing clearance through wear or
outright bearing failure. In many of these scenarios the rotor continue to rotate and so,
depending on the problem, it is often the steady state response to the out-of-balance
excitation forces which is of concern, rather than a particular transient event.

Both the harmonic balance method (HBM) and continuation schemes are well-known
numerical tools to study non-linear dynamics problems. However, they seem to be used
rarely in conjunction with each other in engineering applications, as continuation appears
more frequently with time-domain methods, such as shooting or boundary value problem
solvers. Recent rotor dynamics examples using time-domain methods with continuation
have been provided by Sundararajan and Noah [1, 2] dealing with squeeze-"lm-damper
and journal-bearing analysis and by Petrov [3] for shroud/blade friction. Contrary to the
shooting method or boundary value problems, the HBM is essentially a frequency-domain
method. It is not only convenient for the purposes of linearization of systems with small
non-linearities [4], but can also be applied to large non-linearities [5]. Kim et al. [6]
analyzed the behaviour of rotors with bearing housing clearances using the HBM at
discrete speeds but without continuation.

As with most numerical techniques, calculating the Jacobian (most probably by
numerical "nite di!erence estimation) is part of solving the equations set-up by the
0022-460X/01/120223#11 $35.00/0 ( 2001 Academic Press
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harmonic balance method [7, 8]. It will be shown that the availability of the Jacobian
means that the HBM lends itself nicely to the studies of the stability of a solution in the
frequency-domain: i.e., without having to go back into the time-domain (Floquet analysis).
To the authors' knowledge, such an algorithm for a non-linear system is novel, as only
examples of applications to linear time-variant systems have been found in the literature.
Naturally, the algorithm described here is not only suitable for rotor/stator contact
problems but also applicable to other common non-linear elements in structural dynamics.

2. HARMONIC BALANCE FORMULATION

Given the computing resources, the HBM is easily applicable to problems with a large
number of degrees of freedom (d.o.f.s). Typically, such a problem consists of "nite element
models of large parts of the structure or substructures where a linear representation is
adequate, and some &&problematic'' d.o.f.s for special areas, for example, where friction,
impacts, or other interaction occurs. Usually, the linear d.o.f.s outnumber the non-linear
ones by a large ratio.

The example that will be used later on deals with the dynamics when rotor and stator
come into contact. At this stage, it does not matter which of the rotor/stator contact
scenarios described in section 1 is under investigation. The rotor and stator are modelled
as linear structures, and there will be some linear external forces like gravity and
out-of-balance. The contact region supplies the non-linear forcing at a few d.o.f.s on both
rotor and stator.

For simplicity, the complete system is split into its linear part, represented by the usual
mass, sti!ness, damping matrices, with some linear external force vector, M f

u
N (for example,

unbalanced masses), and its non-linear part, which is represented here as a single force
vector, M f

c
N combining all non-linear e!ects (contact between rotor and stator):

[M]MrK N#[C]MrR N#[K]MrN"M f
u
(t)N#M f

c
(r)N. (1)

The harmonic balance method o!ers an alternative to time-domain methods for the
analysis of cases where a steady state, periodic solution to the equation of motion is sought.
The general idea is to represent each time history, r(t), by its frequency content, R(u), to
obtain a set of equations by balancing the terms with the same frequency components and
to start an iterative procedure to "nd the roots of these equations.

An integer variable, l, is introduced to accommodate possible sub-harmonics of an
external excitation frequency, X (for example, shaft rotation). The displacements, r(t), and
forces, f (t), are represented as truncated Fourier series with N harmonics:

r(t)"
N
+
n/1

R
n
e*(nX@l)t, f

c
(t)"

N
+
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F
cn
e*(nX@l) t, f

u
(t)"
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F
un
e*(nX@l)t. (2)

Substituting these expressions, equation (2), into the rotor equation of motion, equation (1),
and balancing the harmonic terms yields, for a harmonic n:

A!A
nX

l B
2
[M]#i

nX

l
[C]#[K]B MR

n
N"MF

cn
N#MF

un
N. (3)

Bringing all N harmonics into one equation can be symbolized as

[KI ]MRN!MF
c
N!MF

u
N"0, (4)
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where [KI ] is a complex block-diagonal matrix of the form

!A
nX

l B
2
[M]#i

nX

l
[C]#[K]"[KI

n,n
] (5)

and MRN and MFN are the vectors of Fourier coe$cients of displacements and forces
respectively. As the Fourier coe$cients, F

cn
, of the non-linear forces, f

c
, are functions of the

displacements (and thus their respective Fourier coe$cients),

F
cn
"F

cn
(R

0
(u

0
) , R

1
(u

1
),2, R

N
(u

N
)), (6)

equation (4) is non-linear and must be solved iteratively. This iteration process [6] can be
sketched as

R(u)(k) FFT~1
&" r (t) (k)Pf

c
(t)(k`1) FFT&"F

c
(u)(k`1)PR(u) (k`1) .

The fast Fourier transform (FFT) and its inverse could be replaced with a (costlier)
curve-"tting algorithm that does not rely on an integer number of cycles so that the
procedure also works with incommensurate frequency components (quasi-periodic
solution). The roots of equation (4) are found by using a quasi-Newton algorithm, variants
of which are widely available in Fortran libraries on the internet or in Matlab's
optimization toolbox.

Finite element models of rotor/stator structures can contain quite a large number of
d.o.f.s. Setting up equation (4) then leads to a much bigger problem with 2N#1 times more
unknowns (real and imaginary components for N harmonics and a DC component). Any
reduction of the original problem, therefore, leads to a huge saving in computational cost.

3. REDUCTION

The harmonic balance method o!ers an elegant means of reducing the problem order, so
that only the non-linear d.o.f.s need to be kept [6]. Clearly, being able to keep only the
non-linear d.o.f.s vastly increases the speed in the case of linear structures which have a few
additional non-linear elements, as is typical for many classes of problems. Equation (3) is
re-ordered for every harmonic, n (the subscripts n are omitted in this section for clarity):
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where subscripts m and s stand for non-linear (master) and linear (slave) d.o.f.s respectively.
It follows that

[KI K ]"[KI
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] [KI
ss
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and

[KI K ]MR
m
N!MF

c
N!MFK

u
N"0. (10)

In contrast to the widely used Guyan reduction, equation (10) is an exact reduction of the
original problem as long as the prerequisites for applying the harmonic balance method are
met and the number of harmonics included in the decomposition is su$cient. This
reduction makes the repetitive task of calculating solutions at various parameters for the
continuation of a solution branch much cheaper indeed.
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4. ARC-LENGTH CONTINUATION

Usually, the system behaviour is of interest over a range of values for at least one
parameter (for example, speed of shaft rotation), so that the solution has to be calculated at
di!erent parameter values consecutively. As time-domain methods seem to be used more
often than frequency-domain methods, the use of continuation schemes in conjunction with
the harmonic balance method appears to be not as common in engineering applications as,
say, with shooting methods. However, arc-length continuation is just as applicable in the
frequency-domain as it is in the time-domain. The task of "nding a periodic solution for
equation (1) can be transformed into an equivalent root-"nding problem, for example, by
means of "nite di!erence, shooting, HBM (see equation (4))

F (y, X)"0, (11)

where X is an independent, externally controlled (exogenous), scalar parameter, such as
excitation frequency or rotor speed, over a range in which the solution to equation (1) is of
interest.

Using the notation F
y
"LF(y, X)/Ly and FX"LF(y, X)/LX, the di!erential of equation

(11) can be written as

dy/dX"!(F
y
)~1FX . (12)

Choosing X directly as a continuation parameter (called &&sequential'' or &&natural
continuation'') fails at turning points because of the singularity of F

y
(see transition from

stable to unstable at X+1)4 in Figure 2 of section 6). To overcome this limitation,
a continuation parameter, a, along the arc-length of a solution branch is chosen, so that
y"y (a) and X"X (a). From equation (11) one obtains

F
y

dy

da
#FX

dX

da
"[F

y
FX] A

y@
X @B"0. (13)

The arc-length, a, may be normalized [9], so that the tangent vector, (y{X{), has unit length:

A
dy

1
da B

2
#2#A
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N
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2
#A

dX

daB
2
"1. (14)

With (y(a*k+), X(a*k+)) denoting a solution previously calculated during continuation, an
additional equation can be gained for the additional unknown a by multiplying equation
(14) with (da)2,

0"g (y, X, a)

"(y
1
!y

1
(a*k+))2#2#(y

N
!y

N
(a*k+))2

#(X!X(a*k+))2!(a!a*k+)2. (15)

Equation (15) can now be used to parameterize equation (4) by formulating an extended
system [10]:

FI (y, X, a)"A
F (y, X)

g(y, X, a)B"0. (16)

Equation (16) allows the solver to move along the arc-length a of a solution branch. The
reader is referred to references [9}11] for predictor}corrector and step control schemes that
facilitate the following of a solution of FI (y, X, a) along a range of values for a. For
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simplicity, the results of the previous step (y (a*k+), X(a*k+)) may be used as an initial guess for
the next, and a simple step control a*k`1+"a*k+#p/q can be employed, where p is
a constant and q is the number of iterations needed for the previous solution. With
quasi-Newton solvers an optimal ratio of p/q is suggested by Seydel [10] such that roughly
q"6 iterations of the quasi-Newton solver are necessary in between arc-length steps. As
a "rst guess initiating the continuation procedure, one may use a random guess or in more
di$cult cases "nd approximate values from a solution obtained previously by time
integration. As demonstrated in the numerical example below, there are now no problems in
passing turning points and following the overhung part of the solution branch shown in
Figure 2 of section 6. Obtaining information about the stability of such a solution branch
being followed is discussed in the following section.

5. STABILITY

When HBM with arc-length continuation is employed, there is nothing in the algorithm
per se that can warn the user that a particular solution branch followed has stepped over
a turning or bifurcation point and the solution has switched stability, from stable to
unstable, or vice versa. For example, there might be only a little change in the conditioning
of the Jacobian of the system before and after such a change, nor is there a change in the
convergence behaviour of the algorithm. This is a practical problem (not a theoretical one,
as the Jacobian F

y
is indeed singular exactly on a turning or bifurcation point) as change in

conditioning of the Jacobian could occur far more rapidly than the step-length is able to
resolve.

Stability in the time-domain is usually determined by the well-known Floquet
multipliers, which are extensively covered in the previously cited text books. It makes sense
to employ this method when one operates in the time-domain anyway. For example, by
using the shooting method, one can determine the stability in parallel to solving for periodic
solutions, albeit at the cost of doubling the problem size [1]. However, it is less
advantageous when one operates in the frequency-domain using the harmonic balance
method. Many papers employing HBM either ignore the stability issue or revert back to
time marching solutions to answer this question. At little computational cost, however,
stability can be analyzed in the frequency-domain with a modi"cation of an algorithm
employed for linear time-variant systems. The algorithm is called Hill's method and
transforms a linear time-variant system into an eigenvalue problem of a linear
time-invariant system [7].

In order to use the same approach for non-linear systems, the stability analysis is carried
out by investigating the e!ect of a perturbation around a periodic solution r*(t). Although
Hill's method for linear systems is documented in text books and the approach to study the
stability of non-linear systems typically involves the linearization around that solution [10],
the following approach of the combination of the two has not been previously encountered
in the literature. Let the perturbation be described as p (t), where p (t) consists of a decay term
ejt and a periodic term s(t) [7,8]:

p (t)"ejts(t), s(t)"
N
+

n/~N

S
n
e*(nX@l)t. (17)

Substituting

r(t)"r* (t)#p(t) (18)
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into equation (1), one obtains

[M]MrK *N#[C]MrR *N#[K]Mr*N

#(j2[M]MsN#j(2[M]MsR N#[C]MsN)#[M]MsK N#[C]MsR N#[K]MsN)ejt

"M f
u
(t)N#M f

c
(r*#sejt)N. (19)

By substituting the Fourier representations of r* (t), s(t) into equation (19), the harmonic
components can be balanced in an analogue manner to equation (4),

[KI ]MR*N#(j2[MI ]#j[CI ]#[KI ]) MSNejt

"MF
u
N#MF

c
(R*#Sejt)N, (20)

where [M3 ] and [CI ] are constructed in a similar manner to [KI ] in equation (5) and MR*(u)N
and MS(u)N are the vectors of Fourier coe$cients for r*(t) and s(t) respectively.

In what follows, an attempt is being made to "nd a cost-e!ective linearization for the term
MF

c
(R*#Sejt)N so that equation (20) can be developed further. Consider a variant of

equation (4),

MF
c
N"[KI ]MRN!MF

u
N!ME (R)N, (21)

where ME(R)N is the error in the balancing terms. Developing this as a Taylor series around
a known solution of equation (4), MR*N, one obtains

MF
c
(R)N"[KI ]MRN!MF

u
N![E@(R*)] (MRN!MR*N)#higher order terms, (22)

with the abbreviation [E@]"[LE/LR]. Substituting equation (22) into equation (20) and
neglecting terms of higher order simpli"es equation (20) to the following eigenvalue
problem:

(j2[MI ]#j[CI ]#[E@(R*)])MSN"0. (23)

It is important to note that the term [E@(R*)] is already available as a byproduct of the
quasi-Newton solution technique, as it is the Jacobian of the objective function de"ned by
equation (4). In the example below, it was su$cient to approximate the Jacobian
numerically by calculating the "nite di!erences in the objective function due to small
perturbations (a standard implementation as part of a quasi-Newton solver). One is, of
course, free to use other methods of determining the Jacobian; in particularly
ill-conditioned cases it might even be necessary to provide an analytical description of the
Jacobian function in order to aid the solver to "nd the periodic solutions (which is a more
general issue of solution convergence than HBM or stability analysis).

Solving for the eigenvalues of equation (23), one obtains a set of j
i

with real and
imaginary parts, where a negative real part indicates stability of the solution, as the
perturbation p (t) decays with time, and a positive real part indicates instability. So, by
solving this eigenvalue problem at the end of the overall iteration procedure, and simply
checking if any j

i
possesses a real part '0, one can easily determine whether a periodic

solution r*(t) is unstable. This also helps with "nding possible bifurcation points. A change
in stability of a solution branch is a su$cient indicator that a turning or bifurcation point
has been passed, and the algorithm could be directed to determine the cross-over point
within this interval of change more closely. Should this be of interest and the cross-over
point found, the rank of F

y
and [F

y
FX] at the cross-over determines whether the point in

question is a turning or bifurcation point [10]. If indeed it is a bifurcation point a further
solution branch may be followed.



Figure 1. A Je!cott rotor with stator.
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6. NUMERICAL EXAMPLE

Although the algorithm described above is easily scalable to systems with a large number
of d.o.f.s, a simple modi"ed Je!cott rotor (see Figure 1) is used here for clarity.

The equations of motion for a Je!cott rotor interacting with a linear stator structure are

m
r
rK
r
#c

r
rR
r
#k

r
r
r
"!f

c
#X2m

r
e
m
e*Xt, (24)

m
s
rK
s
#c

s
rR
s
#k

s
r
s
"f

c
, (25)

where r
r
, r

s
are the rotor and stator displacements in the complex plane and f

c
is the contact

force between rotor and stator,

f
c
"k

c
d, (26)

where d is the depth of the contact described below in equation (27) and k
c
the local (in this

case linear) contact sti!ness (for more realistic simulations one would have to choose
a non-linear contact force, see Reference [12]). For the purpose of numerical simulation,
a small contact penetration d of the rotor and stator rings is allowed. The contact sti!ness k

c
in this penetration region is being set to a value orders of magnitude higher than the rotor
shaft or stator suspension sti!ness, so that the penetration depth is orders of magnitude
lower than rotor and stator de#ections. The contact depth is de"ned as

d (t)"G
r
r
#e

r
e*Xt!r

s
!e

s
!he*t if Dr

r
#e

r
e*Xt!r

s
!e

s
D'h

0 otherwise H, (27)

where r
r
and r

s
are rotor and stator displacements, h is the gap size, e

r
a possible o!set of the

rotor disc and e
s
a stator o!set. These entities are depicted in Figure 1.

For the special case of full annular rub with e
r
, e

s
"0 and isotropic rotor supports, the

equations of motion become quasi-static for pure forward or backwork whirl. At a given
speed, the steady state conditions of rotor whirl are such that the radial de#ection of the
rotor is constant. The only frequency component in the imbalance response spectrum is
thus the engine-order speed, X, and thus N, l"1. This simple case is used here to illustrate
the stability and continuation study, with the following values: m

r
"1, k

r
"1, c

r
"0)02,

m
s
"0)1m

r
, k

s
"2k

r
, c

s
"0)002, e

m
"1, friction k"0)1, contact sti!ness k

c
"100k

r
(1#ik)

and gap h"3. In Figure 2, the magnitudes of the rotor and stator responses r
r
and r

s
are

plotted versus the rotor speed of rotation X . One can see that at speeds X(0)9 the rotor
imbalance response is too low to overcome the clearance (h"3, dashed line) and rotor and



Figure 2. Magnitude of rotor and stator response at constant speed. Solution: #stable, L unstable.

Figure 3. Second solution branch at X'6. Solution: (#), stable: (L), unstable.
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stator are not in contact (stator response zero). As the continuation procedure is started in
this speed range with no rotor/stator contact, a simple random guess for the initial
conditions is su$cient for solver convergence. At speeds 0)9(X(1)4 rotor and stator are
in contact (non-zero stator response), albeit the overhung part of the curve represents an
unstable solution. At speeds X'1)4, well past the natural frequency of the rotor, which
has been normalized to u

r
"1, the super-critically running rotor loses contact with the

stator.
Figure 3 shows a second solution branch at X'6, which is not seen in the 1-d.o.f.

Du$ng-type oscillators that display only the overhung behaviour in Figure 2. It must be
noted that by following the branch previously discussed, the one that lost contact with the
stator and is coming into this picture from the left, there is no indication of the existence of
the second branch. The branches of the rotor de#ections intersect, but in the whole space of
rotor and stator de#ections these curves do not come near each other (see stator solution
branches), so there is no warning in terms of changes in stability or conditioning of the
Jacobian.

This second solution branch was found by brute force, using hundreds of random initial
guesses at di!erent speeds, in a quest to "nd out whether the system could vibrate in an
&&inverted'' modeshape, where the stator is moving like a hula-hoop around the rotor. The



Figure 4. Harmonics 1
3
, 1
2
, 1, 2, 3, 4, 5 EO versus speed of rotation (Hz).
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success rate of "nding the second branch from the random initial guesses as a whole was
poor: many did not converge to any solution, most settled on the solution where rotor and
stator were out of contact. The ones that did settle on the second solution branch seemed to
settle just as easily in terms of convergence on the unstable part of the branch as on the
stable one, albeit a physical system would object to that. Once a solution on that branch is
found, it is easy to follow with a continuation scheme.

Making the system more general with e
r
, e

s
O0 and non-isotropic rotor and stator

mounts gives rise to more complicated motion. Under these circumstances the system has
speed regimes where the rotor is rubbing along the stator only over parts of the orbit,
causing sub- and super-harmonics to emerge. Even a full annular rub in these circumstances
would consist of higher harmonics (but no sub-harmonics, which require intermittent
contact). Figure 4 shows the frequency content of the rotor motion at various speeds. The
harmonics are expressed in engine order ratios and their magnitude is given in dB. At lower
speeds ((15 Hz) only the 1EO (""rst engine order"X) component is present, as rotor
and stator are out of contact and without the non-linear forces no other frequency
components but 1EO (due to the imbalance) is expected. As soon as rotor and stator come
into contact at higher speeds the other frequency components start to come into play.
l"12 and n"4, 6, 12, 24, 36, 48, 60 are chosen to capture the frequency components 1

3
, 1
2
, 1,

2, 3, 4, 5 EO.
These frequency components are easily con"rmed by comparing the results with a time

marching solution of the system. Figure 5(a) shows the rotor and stator orbits at a "xed
speed (X"22 Hz) that are obtained in two ways (and plotted on top of each other): time
marching and HBM using 32 frequency components (n"1,2, 32, l"2, the other system
parameter values are m

r
"1, k

r
"(2n17)2, c

r
"4, m

s
"2, k

s
"(2n12)2, c

s
"3, k

c
"100k

r
,

h"2, e
m
"0)2, e

r
"0, e

s
"1). There is no visible di!erence between the orbits obtained

with time-marching and HBM methods, so for the purpose of this example one may regard
the HBM solution with 32 harmonics as exact. However, 32 frequency components is
a large number (which is chosen here only to validate that there can be complete agreement
between time-marching and HBM results), and it is interesting to see what happens when
fewer frequency components are used. Figure 5(b) shows the resulting orbits when the
HBM is used with only four frequency components in the setup (n"1,2, 4, l"2). Not
surprisingly, the orbits have a slightly di!erent shape compared to those of Figure 5(a), but
one can see that the fundamental physical e!ect, namely, the sub-harmonic loop, is still
retained. When reducing the number of harmonics further to two or only one, the solver
found only a physically totally di!erent solution, namely rotor and stator out of contact,
where the stator is stationary and the rotor in a simple out-of-balance orbit.



Figure 5. HBM rotor and stator results with various number of harmonics in the set-up.
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This emphasizes the problem to setup the equations to contain those frequencies that the
system responds at. It is therefore a method that in general can only be used if some a priori
knowledge about a system is available, be it from experience with previous designs, time
marching simulations, or experiments. Measurements from a test rig [13] also show that the
physical system in such a rotor/stator contact scenario predominantly responds at a few
distinct frequencies, thereby indicating that the HBM with a few selected frequencies is an
adequate representation of the physical behaviour.

7. CONCLUSIONS

The presented frequency-domain algorithm calculates the periodic solution, traces the
solution along a varying parameter and determines the stability of a solution branch. For
the investigation of stability previous studies have reverted back to the time-domain.
A major motivation for working in the frequency-domain is the computational speed
advantages it has over time-domain methods.

The solution process of the HBM method itself is less expensive than time-domain
methods, and the reduction to the non-linear d.o.f.s o!ers vast savings in large "nite element
models with only a few non-linear components. It was found that in the given numerical
example the harmonic balance method was over 100 times faster than time-domain
shooting and boundary-value-problem solving.

HBM also functioned properly in many instances where the time-integration routines
had di$culties. The source of these di$culties lies in the contact problem. As both rotor and
stator have non-negligible mass (and thus dynamics in their own right), the penalty sti!ness
k
c
determines the violence of the rotor/stator impacts and thus tests the robustness and

in#uences the speed of convergence of any chosen method. A more sophisticated contact
model can alleviate this problem to a large extent.

The above-mentioned advantages of the algorithm used here make it a worth-while
ingredient in any tool-set analyzing non-linear systems. However, there are of course,
situations where the harmonic balance method does not "nd a solution. This is usually an
indication that not enough or not the right harmonic components are included in the
set-up. Furthermore, the fact that a solution has been obtained is not a su$cient condition
that no important frequency components have been omitted in the set-up. One further
enhancement might be to choose a hybrid approach of an initial set-up in the time-domain,
giving an overview of the response spectrum, and continuation in the frequency-domain to
maximize on the robustness and speed advantages of the HBM.
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